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The accuracy and efficiency of several methods are compared for simulating multi-
fluid compressible flows. The methods include a Godunov scheme (Colella, 1985), a 
Weighted Essentially Non-Oscillatory method (Jiang and Shu, 1996), an Arbitrary 
Lagrangian Eulerian algorithm (Marinak et al., 2001) and a compact scheme (Cook and 
Cabot, 2005). Test problems include a compressible breaking wave, the Shu-Osher 
problem, the Taylor-Green vortex and decaying turbulence. The compact method 
employs an artificial bulk viscosity for treating shocks and an artificial shear viscosity 
for modeling turbulence. The compact method is demonstrated to capture shocks as well 
as the other schemes, while providing superior resolution of post-shock features. 

 

Introduction 
Flows involving shocks are usually treated with low-order methods, which either 

take advantage of the eigenstructure of the equations (Godunov) and/or adjust the local 
differencing stencil (ENO) to capture discontinuities with minimal oscillations. In many 
applications, ranging from Inertial Confinement Fusion (ICF) to supernovae, shocks 
deposit vorticity at material interfaces, which subsequently evolve into turbulent mixing 
zones; secondary shocks may then pass back through the turbulent regions. Such 
problems present a formidable challenge to traditional Computational Fluid Dynamics 
(CFD) algorithms, where high order of accuracy for turbulent mixing is usually sacrificed 
in favor of robustness and monotonicity for the shocks. Recently, the need for accurate 
predictions of mixing at shock-accelerated interfaces has driven the development of high-
order shock-capturing schemes. 

Spectral (Fourier, Chebyshev or Legendre polynomials) and spectral-like 
(compact/Pade) methods are much better at resolving a wide range of scales than lower-
order finite-difference (FD) or finite-volume (FV) schemes. However, these methods 
suffer from Gibbs phenomenon when applied to shocks. Recently, is has been shown that 
Gibbs oscillations around shocks can be eliminated by applying a hyperviscosity in 
combination with a de-aliasing filter (Cook and Cabot, 2005). The purpose of this paper 
is to compare a high-order compact shock-capturing method with several standard low 
order methods. The particular schemes utilized for comparison are a Godunov method 
(Collela, 1985), a Weighted Essentially Non-Oscillatory (WENO) method (Jiang and 
Shu, 1996) and an Arbitrary Lagrangian Eulerian method (Marinak, 2001). 
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Test problems 
Compressible Breaking Wave 

The first test case is a compressible breaking wave. The problem is described in 
detail in Cook and Cabot (2004). It consists of sinusoidal initial conditions for density, 
pressure and velocity. As time progresses, the sinusoid steepens into a shock. An exact 
solution is available until the shock forms (Landau and Lifshitz, 1959). Figure 1 depicts 
the evolution of the density field in the moving frame of reference. 

 

 
Figure 1. Normalized density for a compressible breaking wave in moving frame of 
reference. The heavy solid line is the initial condition. The profile steepens into a 
shock as time progresses. 

 

 

Figure 2 shows how global errors progress for the WENO, Godunov and compact 
schemes as the flow develops.   

Cook, A.W. 

 

2



Proceedings from the 5LC 2005 

 
Figure 2. Time-evolution of errors for the compact (solid), WENO (dashed) and 
Godunov (dotted) schemes for the compressible breaking wave, using 128 points per 
wavelength. tb is the time when the shock forms.

 

 

At early times, when the flow is smooth, The compact scheme is much more accurate 
than the WENO or Godunov methods. However, once the shock forms, all methods 
become first order with similar errors. A scale-dependent measure of error was obtained 
by taking the Fourier transform of the density field just prior to shock formation. Figure 3 
displays the density spectrum for each of the schemes when the flow is still smooth. For 
low wavenumbers (large scales) all schemes have small errors; however, for high 
wavenumbers, the errors for the compact scheme are much smaller than those of the low-
order methods. 
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Figure 3. Density spectrum for the breaking wave at t=3tb/4. 

 

 

Figure 4 shows the results for each of the schemes after shock formation. All of the 
methods capture the shock in a monotonic fashion and each of the schemes spreads the 
shock over 3-4 grid points.   
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Figure 4. Normalized density for the breaking wave computed with Godunov 
(dotted line), WENO (dashed line) and compact (thin solid line) schemes. The 
resolution is 64 points per wavelength in each case. The thick solid line is the 
converged solution. 

 

Shu-Osher Problem 
Given that each of the schemes under question performs roughly the same for 

shocks, the question arises as to whether high-order methods provide any benefit for the 
flow behind a shock. To address this issue, we examine the Shu-Osher problem (Shu and 
Osher, 1989) as a second test case. This problem is a canonical model of a 1-D shock-
turbulence interaction. It consists of a shock propagating into a sinusoidal density field, 
leaving a steeply oscillating flow in its wake. The density solution for the various 
schemes is displayed in Figure 5, where the Godunov method is denoted PLMDE 
(Piecewise Linear MUSCL Direct Eulerian). 
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Figure 5. Density field for the Shu-Osher problem at t=1.8. 

 

 

There are two things to note in Figure 4. First, the compact scheme is best able to capture 
the post-shock oscillations, and second, there is an apparent phase shift in the oscillations 
for the low-order schemes at the nominal resolution. At higher resolutions, all schemes 
converge to the black line and the phase shift disappears (results not shown). Figure 5 
suggests that there is indeed benefit to using high-order schemes to resolve post-shock 
turbulence. 

 

Taylor-Green Vortex 
To further elucidate the relative merits of each scheme for turbulence simulations, 

we examine their behavior on the Taylor-Green vortex (Taylor and Green, 1937). This is 
a three-dimensional problem with triply periodic boundary conditions. Each of the 
methods was run on a 643 grid. Initially, the flow consists of a single two-dimensional 

Cook, A.W. 

 

6



Proceedings from the 5LC 2005 

vortex with all of the energy in the bottom wavenumber.  As the flow develops, the 
vortex stretches and bends and energy cascades to higher wavenumbers, thus filling out 
the spectrum. A semi-analytic solution is available for enstrophy out to a time of about 3. 
Figure 6 shows normalized total enstrophy for each of the methods applied to this flow. 

 

 
Figure 6. Time-evolution of normalized enstrophy for the Taylor-Green vortex in a 
643 computational domain. 

 

Clearly, the compact scheme is much better at resolving small scale vorticity than the 
Godunov, WENO or ALE methods. 

 

Decaying Turbulence 
Finally, we turn to decaying turbulence, a standard test case for both Reynolds-

averaged and subgrid-scale turbulence models. The motivation for looking at this case is 
to see if the hyperviscosity introduced in the compact method acts as a proper subgrid-
scale model. The recent experiment of Kang et. al. (2003) provides excellent high 
Reynolds number data for testing numerical methods and turbulence models. In their 
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experiment, air is blown past an active grid in the Corrsin wind tunnel, generating near-
isotropic turbulence at a Taylor microscale Reynolds number of about 720. An array of 
four X-wire probes is used to measure velocity at four downstream stations. We compare 
two numerical simulations of this experiment, one with the hyperviscosity model turned 
on and one with it turned off. The initial conditions for the simulations consist of a triply-
periodic velocity field in a 1923 box, with a kinetic energy spectrum matched to first 64 
wavenumbers of the experimental spectrum at the first station. Wavenumbers above 64 
are truncated in each simulation in order to match the resolution of the simulations in 
Kang et.al. (2003). Pressure is obtained by solving a Poisson equation with a divergence-
free velocity field. The kinematic viscosity in the simulations matches that of the 
experiment. Simulation time is related to distance downstream using the mean 
experimental flow velocity. Figure 7 depicts the evolution of the 3-D kinetic energy 
spectrum, as well as the decay of turbulent kinetic energy (KE) for the experiment and 
simulations. 

 

  
Figure 7. Evolution of 3D energy spectrum for wind tunnel experiment of Kang et. 
al. (2003). The inset in the first plot shows decay of turbulent kinetic energy. The 
vertical lines correspond to the 2/3-wavenumber truncation. 
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The figure shows that with the hyperviscosity model turned on, excellent agreement is 
obtained between the experimental and simulated spectrum. Furthermore, the overall rate 
of energy decay is correctly represented. Without the model, energy piles up near the 
filter cut-off and propagates back to lower wavenumbers, eventually corrupting the entire 
spectrum. Excess energy at high wavenumbers is sometimes referred to as the 
“bottleneck effect”. It is caused by an incorrect rate of energy transfer between resolved 
and subgrid-scales. Implicit large-eddy simulations (sometimes referred to as MILES) 
typically exhibit this anomaly. 

 

Conclusions 
The compact scheme with hyperviscosity provides an attractive alternative to 

standard upwinded schemes when computing flows containing both shocks and 
turbulence. While the compact method does not provide any better representation of 
shocks themselves, it does allow for improved resolution of flow features away from 
shocks. Additionally, hyperviscosity can act as an effective subgrid-scale model, as 
demonstrated by the decaying turbulence problem. 
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